Broadband antireflective nano-cones for tandem solar cells

Broadband solar cell antireflection coatings made of nano-cones are studied in square lattices of ZnS, TiO(2) and Si(3)N(4). In the best case, the spectrally integrated transmittance (accounting for both reflection and dielectric absorption losses) for direct solar radiation is 99 %, which represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-04, Vol.23 (7), p.A322-A336
Hauptverfasser: Buencuerpo, J, Llorens, J M, Dotor, M L, Ripalda, J M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Broadband solar cell antireflection coatings made of nano-cones are studied in square lattices of ZnS, TiO(2) and Si(3)N(4). In the best case, the spectrally integrated transmittance (accounting for both reflection and dielectric absorption losses) for direct solar radiation is 99 %, which represents a four-fold decrease in transmission losses in comparison to a standard antireflective coating bilayer. The dependence of the transmission as a function of nanostructure dimensions is studied, showing a wide maximum, thus leading to a high tolerance for manufacturing errors. This high transmittance is also robust against deviations from normal incidence. Our analysis suggests that the high transmittance is due not only to an effective gradual index effect, but is also due to light coupling to quasiguided modes in the photonic crystal leaking mostly towards the substrate.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.00A322