Advances in gluten-free bread technology
The unattractive appearance of gluten-free bread still remains a challenge in gluten-free breadmaking. In response to this, additives such as dairy products, soya and eggs have been used to improve the quality of gluten-free bread, but with limited success. In recent years, enzymes (transglutaminase...
Gespeichert in:
Veröffentlicht in: | Food science and technology international 2015-06, Vol.21 (4), p.256-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unattractive appearance of gluten-free bread still remains a challenge in gluten-free breadmaking. In response to this, additives such as dairy products, soya and eggs have been used to improve the quality of gluten-free bread, but with limited success. In recent years, enzymes (transglutaminase and cyclodextrinase) and hydrocolloids (carboxymethylcellulose and hydroxypropylmethylcellulose) have become the main focus for the improvement of gluten-free bread. Transglutaminase has been shown to improve the dough viscoelasticity and decrease crumb hardness (6.84–5.73 N) of the resulting bread. Cyclodextrinase also enhances dough viscoelasticity, resulting in an improvement of 53% in shape index and crumb firmness. Similarly, hydroxypropylmethylcellulose improves gas retention and water absorption of dough and reduces crumb hardening rate of the resulting bread, while carboxymethylcellulose significantly increases dough elasticity (60–70 BU) and bread volume (230–267 cm3/100 g bread). |
---|---|
ISSN: | 1082-0132 1532-1738 |
DOI: | 10.1177/1082013214531425 |