Effects of C-Terminal Domain Truncation on Enzyme Properties of Serratia marcescens Chitinase C
A chitinase gene (SmChiC) and its two C-terminal truncated mutants, SmChiCG426 and SmChiCG330 of Serratia marcescens, were constructed and cloned by employing specific polymerase chain reaction (PCR) techniques. SmChiCG426 is derived from SmChiC molecule without its C-terminal chitin-binding domain...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2015-04, Vol.175 (8), p.3617-3627 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A chitinase gene (SmChiC) and its two C-terminal truncated mutants, SmChiCG426 and SmChiCG330 of Serratia marcescens, were constructed and cloned by employing specific polymerase chain reaction (PCR) techniques. SmChiCG426 is derived from SmChiC molecule without its C-terminal chitin-binding domain (ChBD) while SmChiCG330 is truncated from SmChiC by its C-terminal deletion of both ChBD and fibronectin type III domain (FnIII). To study the role of the C-terminal domains of SmChiC on the enzyme properties, SmChiC, SmChiCG426, and SmChiCG330 were expressed in Escherichia coli by using the pET-20b(+) expression system. The His-tag affinity-purified SmChiC, SmChiCG426, and SmChiCG330 enzymes had a calculated molecular mass of 51, 46, and 36 kDa, respectively. Certain biochemical characterizations indicated that the enzymes had similar physicochemical properties, such as the optimum pH (5), temperature (37 °C), thermostability (50 °C), and identical hydrolyzing product (chitobiose) from both the soluble and insoluble chitin substrates. The overall catalytic efficiency k cₐₜ /K M was higher for both truncated enzymes toward the insoluble α-chitin, whereas the binding abilities toward the insoluble α-chitin substrate were reduced moderately. The fluorescence and circular dichroism (CD) spectroscopy data suggested that both mutants retained a similar folding conformation as that of the full-length SmChiC enzyme. However, a CD-monitored melting study showed that the SmChiCG330 had no obvious transition temperature, unlike the SmChiC and SmChiCG426. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-015-1530-5 |