Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis--mass spectrometry

Migraine is a common brain disorder characterized by recurrent attacks of severe headaches and other neurological symptoms. In one-third of patients headaches are accompanied by auras, which consist of transient visual and sensory disturbances, believed to be caused by cortical spreading depression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2015-05, Vol.11 (5), p.1462-1471
Hauptverfasser: Shyti, Reinald, Kohler, Isabelle, Schoenmaker, Bart, Derks, Rico J E, Ferrari, Michel D, Tolner, Else A, Mayboroda, Oleg A, van den Maagdenberg, Arn M J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Migraine is a common brain disorder characterized by recurrent attacks of severe headaches and other neurological symptoms. In one-third of patients headaches are accompanied by auras, which consist of transient visual and sensory disturbances, believed to be caused by cortical spreading depression (CSD). CSD is characterized by a wave of neuronal and glial depolarization with concomitant changes in metabolite concentrations in the brain and cerebrospinal fluid. It remains unknown whether CSD-induced brain metabolic changes can be captured outside the central nervous system, i.e., in peripheral fluids. This study investigated plasma metabolic changes in transgenic mice that harbor a gene mutation in voltage-gated CaV2.1 Ca(2+) channels previously identified in patients with familial hemiplegic migraine, a subtype of migraine with auras. The use of a mouse model allows investigation of molecular changes occurring shortly after CSD, which is notoriously difficult in patients. Capillary electrophoresis - mass spectrometry was used for the analysis of plasma samples to obtain, for the first time, a comprehensive view of molecular changes immediately after experimentally induced CSD. Multivariate data analysis showed a clear distinction between profiles of transgenic and wild-type animals after CSD. Two metabolites considered important for this discrimination were tentatively identified as being lysine and its by-product pipecolic acid with additional evidence provided by hydrophilic interaction chromatography combined with tandem mass spectrometry. The changed metabolites suggest a compensatory increase in GABAergic neurotransmission upon enhanced excitatory neurotransmission. These results show that CSD induces metabolic remodeling in transgenic migraine mice that can be captured and measured in plasma.
ISSN:1742-206X
1742-2051
DOI:10.1039/c5mb00049a