The GAPDH gene system of the red alga Chondrus crispus: promotor structures, intron/exon organization, genomic complexity and differential expression of genes
Our previous phylogenetic analysis based on cDNA sequences of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH; genes GapA and GapC, respectively) of the red alga Chondrus crispus suggested that rhodophytes and green plants are sister groups with respect to plastids and mit...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 1993-12, Vol.23 (5), p.981-994 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous phylogenetic analysis based on cDNA sequences of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH; genes GapA and GapC, respectively) of the red alga Chondrus crispus suggested that rhodophytes and green plants are sister groups with respect to plastids and mitochondria and diverged at about the same time or somewhat later than animals and fungi. Here we characterize the genomic sequences of genes GapC and GapA of C. crispus with respect to promotor structures, intron/exon organization, genomic complexity, G + C content, CpG suppression and their transcript levels in gametophytes and protoplasts, respectively. To our knowledge this is the first report on nuclear protein genes of red algae. The GapC gene is G + C-rich, contains no introns and displays a number of classic sequence motifs within its promotor region, such as TATA, CAAT, GC boxes and several elements resembling the plant-specific G-box palindrome. The GapA gene has a moderate G + C content, a single CAAT box motif in its promotor region and a single intron of 115 bp near its 5' end. This intron occupies a conserved position corresponding to that of intron 1 in the transit peptide region of chloroplast GAPDH genes (GapA and GapB) of higher plants. It has consensus sequences similar to those of yeast introns and folds into a conspicuous secondary structure of -61.3 kJ. CpG profiles of genes GapC and GapA and their flanking sequences show no significant CpG depletion suggesting that these genomic sequences are not methylated. Genomic Southern blots hybridized with generic and gene specific probes indicate that both genes are encoded by single loci composed of multiple polymorphic alleles. Northern hybridizations demonstrate that both genes are expressed in gametophytes but not in protoplasts where appreciable amounts of transcripts can only be detected for GapC. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/BF00021813 |