Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders

In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational research : the journal of laboratory and clinical medicine 2015-04, Vol.165 (4), p.464-479
Hauptverfasser: Roman, Sabiniano, Agil, Ahmad, Peran, Macarena, Alvaro-Galue, Eduardo, Ruiz-Ojeda, Francisco J, Fernández-Vázquez, Gumersindo, Marchal, Juan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.
ISSN:1931-5244
1878-1810
DOI:10.1016/j.trsl.2014.11.002