Evaluation of multi-outcome longitudinal studies

Evaluation of intervention effects on multiple outcomes is a common scenario in clinical studies. In longitudinal studies, such evaluation is a challenge if one wishes to adequately capture simultaneous data behavior. In this situation, a common approach is to analyze each outcome separately. As a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2015-05, Vol.34 (12), p.1993-2003
Hauptverfasser: Jensen, Signe M., Pipper, Christian B., Ritz, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evaluation of intervention effects on multiple outcomes is a common scenario in clinical studies. In longitudinal studies, such evaluation is a challenge if one wishes to adequately capture simultaneous data behavior. In this situation, a common approach is to analyze each outcome separately. As a result, multiple statistical statements describing the intervention effect need to be reported and an adjustment for multiple testing is necessary. This is typically done by means of the Bonferroni procedure, which does not take into account the correlation between outcomes, thus resulting in overly conservative conclusions. We propose an alternative approach for multiplicity adjustment that incorporates dependence between outcomes, resulting in an appreciably less conservative evaluation. The ability of the proposed method to control the familywise error rate is evaluated in a simulation study, and the applicability of the method is demonstrated in two examples from the literature. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.6461