Underlying theory of a model for the Renner-Teller effect in tetra-atomic molecules: X(2)Πu electronic state of C2H2(+)

In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-05, Vol.142 (17), p.174306-174306
Hauptverfasser: Perić, M, Jerosimić, S, Mitić, M, Milovanović, M, Ranković, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.
ISSN:1089-7690
DOI:10.1063/1.4919285