O2 and Ca(2+) fluxes as indicators of apoptosis induced by rose bengal-mediated photodynamic therapy in human oral squamous carcinoma cells
Photodynamic therapy (PDT) triggers various cellular responses and induces cell death via necrosis and/or apoptosis. This study evaluated the feasibility of using O2 and Ca(2+) fluxes as indicators of apoptosis induced by rose bengal (RB)-mediated PDT in human oral squamous carcinoma cells (Cal27 ce...
Gespeichert in:
Veröffentlicht in: | Photomedicine and laser surgery 2015-05, Vol.33 (5), p.258-265 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photodynamic therapy (PDT) triggers various cellular responses and induces cell death via necrosis and/or apoptosis. This study evaluated the feasibility of using O2 and Ca(2+) fluxes as indicators of apoptosis induced by rose bengal (RB)-mediated PDT in human oral squamous carcinoma cells (Cal27 cells).
Intracellular reactive oxygen species (ROS) generation was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Real-time O2 and Ca(2+) flux measurements were performed using the noninvasive micro-test technique (NMT). Apoptosis of the PDT-treated cells was confirmed by 4'6-diamidino-2-phenylindole-dilactate staining. The activation of apoptosis-related molecules was examined using Western blot. We assayed the effects of the fluctuation of O2 and Ca(2+) flux in response to PDT and the apoptotic mechanism, by which ROS, O2, and Ca(2+) synergistically may trigger apoptosis in PDT-treated cells.
Real-time O2 and Ca(2+) flux measurements revealed that these indicators were involved in the timely regulation of apoptosis in the PDT-treated cells and were activated 2 h after PDT treatment. RB-mediated PDT significantly elicited the generation of ROS by approximately threefold, which was critical for PDT-induced apoptosis. Cytochrome c and cleaved caspase-3, caspase-9 and poly ADP ribose polymerase (PARP) were overexpressed, and the data provided evidence that 2 h was considered to be the key observation time in RB-mediated PDT-induced apoptosis in Cal27 cells.
Our collective results indicated that the effects of O2 and Ca(2+) fluxes may act as a real-time biomonitoring system of apoptosis in the RB-PDT-treated cells. Also, RB-mediated PDT can be a potential and effective therapeutic modality in oral squamous cell carcinoma. |
---|---|
ISSN: | 1557-8550 |
DOI: | 10.1089/pho.2014.3863 |