The novel anticonvulsant lamotrigine prevents dopamine depletion in C57 black mice in the MPTP animal model of Parkinson's disease

The effect of the novel anticonvulsant Lamotrigine (LTG) was studied on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced dopamine depletion in C57BL/6 mouse brain. Whole brain dopamine levels were measured by HPLC-ED 2 days after treatment with MPTP (15 mg/kg s.c.). While LTG alone had no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 1994, Vol.54 (4), p.245-252
Hauptverfasser: Jones-Humble, Stacey A., Morgan, Philip F., Cooper, Barrett R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of the novel anticonvulsant Lamotrigine (LTG) was studied on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced dopamine depletion in C57BL/6 mouse brain. Whole brain dopamine levels were measured by HPLC-ED 2 days after treatment with MPTP (15 mg/kg s.c.). While LTG alone had no direct effect on dopamine levels at two hours or two days after treatment, MPTP induced dopamine depletion was significantly less in mice pretreated with LTG (approximate ED 50: 6 mg/kg). LTG (38 mg/kg) was shown to completely protect against dopamine depletion when given 1 or 2 hours prior to MPTP administration. The effect of LTG (38, 100 mg/kg) on MPTP toxically was compared to the effects of the anticonvulsants phenytoin (67 mg/kg), carbamazepine (156 mg/kg), and riluzole (33 mg/kg) and the Ca++ channel blocker nicardipine (0.1 mg/kg). Only phenytoin and LTG showed significant protection against MPTP. Results suggest LTG prevents MPTP induced dopamine depletion via a novel mechanism.
ISSN:0024-3205
1879-0631
DOI:10.1016/0024-3205(94)00813-2