Control Performance Evaluation to Avoid Pounding of Bridges
Earthquake inflicts damage on bridges in various ways. In this research an experimental study was carried out to decrease the damage caused by the pounding of bridges as earthquake load was added. For the experiment, we designed a model of successive bridge composed of a reinforced concrete bridge t...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2013-07, Vol.569-570, p.350-357 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Earthquake inflicts damage on bridges in various ways. In this research an experimental study was carried out to decrease the damage caused by the pounding of bridges as earthquake load was added. For the experiment, we designed a model of successive bridge composed of a reinforced concrete bridge top and I section steel. At each bridge pier was placed a rubber bearing which was frequently used for seismic isolation. As for damper, we ourselves designed and produced a MR damper of 30 KN. Five experimental conditions were given ranging from without damper, with damper but no electricity input, with damper and electricity input, each with two different algorithms. For the experiment, we inflicted a 50% reduced wave of Kobe earthquake horizontally on the model, and compared the displacements and power data under each condition. The result proved that the MR damper of our own design was effective to prevent the successive bridge model from colliding by exerting a sizable amount of influence on its displacement and power data. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.569-570.350 |