Sintering of Copper Sub-Micron Particles by Heat and Atmospheric Pressure Non-Equilibrium Plasma Treatments
In this study, a 35-μm-thick copper sub-micron paste (particle diameter of 700 - 900 nm) was printed on an alumina substrate, and then sintered by conventional heating treatment and by atmospheric pressure plasma (APP) treatment, respectively. Surface micro-structures of the printed films sintered b...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2013-12, Vol.596, p.60-64 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a 35-μm-thick copper sub-micron paste (particle diameter of 700 - 900 nm) was printed on an alumina substrate, and then sintered by conventional heating treatment and by atmospheric pressure plasma (APP) treatment, respectively. Surface micro-structures of the printed films sintered by both methods were observed by SEM. As a result, copper sub-micron particles were successfully sintered at a relatively low temperature by APP treatment. Through the SEM micrographs we suppose that the sintering processes by both methods are quite different. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.596.60 |