The Influence of Cure Characteristics and Crosslink Density of Virgin Acrylonitrile Butadiene Rubber/Recycled Acrylonitrile Butadiene Rubber (vNBR/rNBR) Blends

Cure characteristics and crosslink density of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (vNBR/rNBR) blends were studied. Three different size ranges of rNBR particles, i.e., 150 - 350 μm, 2.0-15.0 mm, and 5-10 cm were used in this study. The vNBR/rNBR blends with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2013-12, Vol.594-595, p.735-739
Hauptverfasser: Noimam, N.Z., Nasir, Muhammad Ridhwan Jamalul, Hanafi, Ismail, Hamzah, Rosniza, Abdullah, Mohd Mustafa Al Bakri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cure characteristics and crosslink density of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (vNBR/rNBR) blends were studied. Three different size ranges of rNBR particles, i.e., 150 - 350 μm, 2.0-15.0 mm, and 5-10 cm were used in this study. The vNBR/rNBR blends with blend ratios of 95/5, 85/15, 75/25, 65/35, and 50/50 were prepared using a two roll-mill at room temperature. The characterization results of the blends show that scorch time, t2, of the vNBR/rNBR blends decreased with increased rNBR content as well as decreasing sizes of rNBR particles while cure time, t90 of the vNBR/rNBR blends increase with increased rNBR content as well as increasing sizes of rNBR particles. Among all blend ratios, the vNBR/rNBR blends with smallest size of rNBR particles exhibit lowest minimum torque (ML) compared with the bigger particle sizes of it in vNBR/rNBR blends which resulted in more efficient processing. The maximum torque (MH) of all vNBR/rNBR blends shows the inclining trend with increased rNBR. The cross-linking density of vNBR/rNBR blends also show an increasing trend with increasing rNBR content.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.594-595.735