Finite Element Analysis of Failure in Cu Interconnect Megasonic Cleaning
Megasonic cleaning has been one of the most successful techniques for Cu/low-k interconnects post-CMP cleaning. The structural deformation and stress of Cu and low-k materials in megasonic cleaning are examined with finite element method (FEM). The maximum stress is concentrated in the binding area...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2013-07, Vol.562-565, p.1471-1476 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Megasonic cleaning has been one of the most successful techniques for Cu/low-k interconnects post-CMP cleaning. The structural deformation and stress of Cu and low-k materials in megasonic cleaning are examined with finite element method (FEM). The maximum stress is concentrated in the binding area between Cu and low-k. With decrease of Cu line width, the maximum stress increases and the max value exceeds the yield strength of Cu which results in the plastic deformation. The increasing frequency will change the bubble collision times. Therefore the fatigue is potential. The maximum displacement moves from center to the sides of top surface with increase of line width. When the line width is 25nm, the deformation is the largest. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.562-565.1471 |