Preparation and Characterization of High Purity β-SiC Powder

SiC powder can be produced generally through the Acheson process and it is required long carbothermic reaction time of SiO2 with carbon powder around 2200 °C ~ 2400 °C. Due to the high reaction temperature and long reaction time of the process, the powders produced have a large particle size and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2012-06, Vol.512-515, p.3-6
Hauptverfasser: Kim, Soo Ryong, Lee, Yoon Joo, Choi, Se Young, Jung, Eun Jin, Kim, Young Hee, Kwon, Woo Teck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SiC powder can be produced generally through the Acheson process and it is required long carbothermic reaction time of SiO2 with carbon powder around 2200 °C ~ 2400 °C. Due to the high reaction temperature and long reaction time of the process, the powders produced have a large particle size and consist of mostly alpha phase SiC. Synthetic temperature of beta phase SiC powder is known to produce at 1700 °C ~ 1900 °C which is lower temperature than that of alpha phase SiC powder. We prepared β-SiC powder by heating precursor derived from the mixture of phenolic resin and tetraethyl orthosilicate. The precursor was heated at 1800 °C for 4 h in an Ar atmosphere. In order to examine the pyrolysis residue after the heat treatment, the SiC powder was analyzed with XRD and SEM. The X-ray diffraction result of the SiC powder shows the diffraction peaks around 35°, 60°, and 73° corresponded to the beta SiC phase. β-SiC powder prepared in this study contains lower metallic impurities compare than that of α-SiC powder prepared from Acheson method and is able to use as a good starting material for SiC single crystal growing.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.512-515.3