'One-pot' synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery
A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH-CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxor...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2014-06, Vol.25 (23), p.235101-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH-CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxorubicin hydrochloride (DOX) was loaded on the GSH-CdTe quantum dots through a condensation reaction. Meanwhile, a polyethylene glycol (PEG) shell was introduced to wrap the DOX-QD, thus stabilizing the structure and preventing clearance and drug release during systemic circulation. To actively target cancer cells and prevent the nanovehicles from being absorbed by normal cells, the nanoparticles were further decorated with folic acid (FA), allowing them to target HeLa cells that express the FA receptor. The multifunctional DOX-QD-PEG-FA conjugates were simply prepared using the 'one pot' method. In vitro study demonstrated that this simple, multifunctional nanovehicle can deliver DOX to the targeted cancer cells and localize the nanoparticles. After reaching the tumor cells, the FA on the DOX-QD-PEG surface allowed folate receptor recognition and increased the drug concentration to realize a higher curative effect. This novel, multifunctional DOX-QD-PEG-FA system shows great potential for tumor imaging, targeting, and therapy. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/25/23/235101 |