Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity

We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2014-03, Vol.98, p.13-26
Hauptverfasser: Gorban, Nataliia V., Kapustyan, Oleksiy V., Kasyanov, Pavlo O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 13
container_title Nonlinear analysis
container_volume 98
creator Gorban, Nataliia V.
Kapustyan, Oleksiy V.
Kasyanov, Pavlo O.
description We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uniform trajectory attractor for all globally defined weak solutions of non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity, (ii) sufficient conditions for the existence of a uniform trajectory attractor in strongest topologies, and (iii) new topological properties of weak solutions.
doi_str_mv 10.1016/j.na.2013.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677993067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13004100</els_id><sourcerecordid>1567088005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e77151e8f5b22e0e0409941c5eee4b37d230af1e6c37847dd0610b7624582fd63</originalsourceid><addsrcrecordid>eNqNUc1u1DAQthBILAt3jjn2kjBjx3bCrVq1BakSFypxs7zJRPVq125tp2hvfQdOPALPwZv0SXC0vSI4zc_3I818jL1HaBBQfdg13jYcUDTIG4D2BVthp0UtOcqXbAVC8Vq26ttr9ialHQCgFmrF4o13U4iHKke7oyGHeKxsLsPSVgWpfPC1nXPw4RDmVEUqkAv-6fHH6KZpTqWv6H62yzJV312-rTY22nz7-1cYi93T48-0mOydJxtdPr5lrya7T_Tuua7ZzeXF182n-vrL1efN-XU9iF7kmrRGidRNcss5AUELfd_iIImo3Qo9cgF2QlKD0F2rxxEUwlYr3sqOT6MSa3Z28r2L4X6mlM3BpYH2e-upXGJQad33ApT-N1UqDV0HIP-DKhE6rhELFU7UIYaUIk3mLrqDjUeDYJbQzM54a5bQDHJTQiuSjycJlcc8OIomDY78QKOLJR0zBvd38R9NvqMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551082711</pqid></control><display><type>article</type><title>Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gorban, Nataliia V. ; Kapustyan, Oleksiy V. ; Kasyanov, Pavlo O.</creator><creatorcontrib>Gorban, Nataliia V. ; Kapustyan, Oleksiy V. ; Kasyanov, Pavlo O.</creatorcontrib><description>We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uniform trajectory attractor for all globally defined weak solutions of non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity, (ii) sufficient conditions for the existence of a uniform trajectory attractor in strongest topologies, and (iii) new topological properties of weak solutions.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.12.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carathéodory’s conditions ; Nonlinearity ; Polynomials ; Reaction-diffusion equations ; Reaction–diffusion system ; Topology ; Trajectories ; Uniform trajectory attractor</subject><ispartof>Nonlinear analysis, 2014-03, Vol.98, p.13-26</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e77151e8f5b22e0e0409941c5eee4b37d230af1e6c37847dd0610b7624582fd63</citedby><cites>FETCH-LOGICAL-c393t-e77151e8f5b22e0e0409941c5eee4b37d230af1e6c37847dd0610b7624582fd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X13004100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Gorban, Nataliia V.</creatorcontrib><creatorcontrib>Kapustyan, Oleksiy V.</creatorcontrib><creatorcontrib>Kasyanov, Pavlo O.</creatorcontrib><title>Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity</title><title>Nonlinear analysis</title><description>We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uniform trajectory attractor for all globally defined weak solutions of non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity, (ii) sufficient conditions for the existence of a uniform trajectory attractor in strongest topologies, and (iii) new topological properties of weak solutions.</description><subject>Carathéodory’s conditions</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Reaction-diffusion equations</subject><subject>Reaction–diffusion system</subject><subject>Topology</subject><subject>Trajectories</subject><subject>Uniform trajectory attractor</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUc1u1DAQthBILAt3jjn2kjBjx3bCrVq1BakSFypxs7zJRPVq125tp2hvfQdOPALPwZv0SXC0vSI4zc_3I818jL1HaBBQfdg13jYcUDTIG4D2BVthp0UtOcqXbAVC8Vq26ttr9ialHQCgFmrF4o13U4iHKke7oyGHeKxsLsPSVgWpfPC1nXPw4RDmVEUqkAv-6fHH6KZpTqWv6H62yzJV312-rTY22nz7-1cYi93T48-0mOydJxtdPr5lrya7T_Tuua7ZzeXF182n-vrL1efN-XU9iF7kmrRGidRNcss5AUELfd_iIImo3Qo9cgF2QlKD0F2rxxEUwlYr3sqOT6MSa3Z28r2L4X6mlM3BpYH2e-upXGJQad33ApT-N1UqDV0HIP-DKhE6rhELFU7UIYaUIk3mLrqDjUeDYJbQzM54a5bQDHJTQiuSjycJlcc8OIomDY78QKOLJR0zBvd38R9NvqMA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Gorban, Nataliia V.</creator><creator>Kapustyan, Oleksiy V.</creator><creator>Kasyanov, Pavlo O.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity</title><author>Gorban, Nataliia V. ; Kapustyan, Oleksiy V. ; Kasyanov, Pavlo O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e77151e8f5b22e0e0409941c5eee4b37d230af1e6c37847dd0610b7624582fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carathéodory’s conditions</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Reaction-diffusion equations</topic><topic>Reaction–diffusion system</topic><topic>Topology</topic><topic>Trajectories</topic><topic>Uniform trajectory attractor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorban, Nataliia V.</creatorcontrib><creatorcontrib>Kapustyan, Oleksiy V.</creatorcontrib><creatorcontrib>Kasyanov, Pavlo O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorban, Nataliia V.</au><au>Kapustyan, Oleksiy V.</au><au>Kasyanov, Pavlo O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity</atitle><jtitle>Nonlinear analysis</jtitle><date>2014-03</date><risdate>2014</risdate><volume>98</volume><spage>13</spage><epage>26</epage><pages>13-26</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uniform trajectory attractor for all globally defined weak solutions of non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity, (ii) sufficient conditions for the existence of a uniform trajectory attractor in strongest topologies, and (iii) new topological properties of weak solutions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.12.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2014-03, Vol.98, p.13-26
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1677993067
source ScienceDirect Journals (5 years ago - present)
subjects Carathéodory’s conditions
Nonlinearity
Polynomials
Reaction-diffusion equations
Reaction–diffusion system
Topology
Trajectories
Uniform trajectory attractor
title Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20trajectory%20attractor%20for%20non-autonomous%20reaction%E2%80%93diffusion%20equations%20with%20Carath%C3%A9odory%E2%80%99s%20nonlinearity&rft.jtitle=Nonlinear%20analysis&rft.au=Gorban,%20Nataliia%20V.&rft.date=2014-03&rft.volume=98&rft.spage=13&rft.epage=26&rft.pages=13-26&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.12.004&rft_dat=%3Cproquest_cross%3E1567088005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551082711&rft_id=info:pmid/&rft_els_id=S0362546X13004100&rfr_iscdi=true