Uniform trajectory attractor for non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity

We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2014-03, Vol.98, p.13-26
Hauptverfasser: Gorban, Nataliia V., Kapustyan, Oleksiy V., Kasyanov, Pavlo O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of uniform long-time behavior of all globally defined weak solutions of a non-autonomous reaction–diffusion system with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth assumptions. The main contributions of this paper are: (i) the existence of a uniform trajectory attractor for all globally defined weak solutions of non-autonomous reaction–diffusion equations with Carathéodory’s nonlinearity, (ii) sufficient conditions for the existence of a uniform trajectory attractor in strongest topologies, and (iii) new topological properties of weak solutions.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2013.12.004