Analysis on high-field magnetic properties of aluminum substituted rare-earth iron garnet at low temperatures

Magnetic properties of aluminum substituted erbium and holmium iron garnets (Er sub(3)Fe sub(4.65)Al sub(0.35)O sub(12), Er sub(3)Fe sub(4.45)Al sub(0.55)O sub(]2) and Ho sub(3)Fe sub(4.55)Al sub(0.45)O sub(2)) are theoretically investigated by a three-sublattice model in high magnetic fields up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2014-06, Vol.360, p.193-199
Hauptverfasser: WEI WANG, XIRUO ZHAO, JIAN ZHUANG, YAJUN ZHANG, WENMING GUO, LAHOUBI, Mahieddine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic properties of aluminum substituted erbium and holmium iron garnets (Er sub(3)Fe sub(4.65)Al sub(0.35)O sub(12), Er sub(3)Fe sub(4.45)Al sub(0.55)O sub(]2) and Ho sub(3)Fe sub(4.55)Al sub(0.45)O sub(2)) are theoretically investigated by a three-sublattice model in high magnetic fields up to 200 kOe applied along the three principal crystallographic directions [100], [110] and [111] at low temperatures (4.2 K and 30 K). The effect of the substitution of the diamagnetic Al super(3-) ion, located in tetrahedral site, on the exchange interaction in rare-earth iron garnets is analyzed. The temperature and field dependence of the magnetization in a, c and d sublattices, labeled as M sub(a) M sub(c)and M sub(d) are analyzed, where obvious anisotropies are revealed. Correspondingly, it is further pointed out that the anisotropy of magnetic properties mainly arises from the contribution of exchange interaction. Excellent fits to the experimental magnetization are carried out, from which the parameters alpha sub(i) (i = a, c, d) associated with the exchange interaction and the effective magnetic susceptibility are determined. At a certain temperature, the parameters conform to the expression alpha sub(i) = P sub(1) + P sub(2) sub(e) super(-1) + P sub(3) sub(e) super(-2), where P sub(1), P sub(2) and P sub(3) are the coefficients, H sub(e) is the external magnetic field.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2014.02.029