Regional Approach to Large Scale Wind Integration in South East Europe

The Southeast Europe Cooperation Initiative Transmission System Planning Project (SECI TSP) is a unique development assistance collaboration supported by the transmission system operators of Southeast Europe (SEE), the United States Agency for International Development (USAID) and the United States...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environment (Essex, England) England), 2015-01, Vol.26 (1-2), p.95-109
Hauptverfasser: Majstrović, Goran, Polen, William L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Southeast Europe Cooperation Initiative Transmission System Planning Project (SECI TSP) is a unique development assistance collaboration supported by the transmission system operators of Southeast Europe (SEE), the United States Agency for International Development (USAID) and the United States Energy Association (USEA). Members of the SECI TSP include 10 transmission system operators from Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Kosovo, Macedonia, Montenegro, Serbia, Romania and Turkey. Slovenia, Greece and Italy participate in the SECI TSP as observers. This paper provides a brief introduction to the SECI TSP and reviews results of a SECI TSP study of the capacity of the high voltage electricity transmission network in SEE to integrate wind power. The analysis results from wind power plant (WPP) data collected and verified by 12 TSOs (including Slovenia and Greece) through a series of detailed questionnaires (324 inputs collected) and intensive regional cooperation supported by USAID and USEA since 2000. Besides that, large set of input data on hourly WPP generation profiles for each SECI country for the 2020 planning horizon was employed from the Pan-European Market Database (87,600 output data). Historical data on WPP generation was used as a reference when such data was available, as well as the data available from the national wind integration studies. The study identifies limiting factors for large scale WPP integration in SEE, contains an analysis of expected WPP output variation, forecasts reserve capacities in the region, identifies network bottleneck resulting from large scale wind integration, and calculates the impact of WPP on regional network losses. The study results indicate that owing to the sub-regional characteristics of wind patterns, the countries of SEE could reduce by approximately 50% the amount of reserve capacity needed to balance intermittent wind production if such capacity is provided on a regional basis as opposed to the traditional country-by-country approach. This would open up more than 2,000 MW of capacity to be available to the regional electricity market as opposed to holding them in reserve on an individual, country-by country basis. Also, more than 30 regional network bottlenecks were identified as a result of large scale WPP integration through different load flow scenarios.
ISSN:0958-305X
2048-4070
DOI:10.1260/0958-305X.26.1-2.95