Deuteration around the ultracompact HII region Monoceros R2
Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact Hii region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims. We aim at studying the chemistry of deuterated...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2014-09, Vol.569, p.1-30 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact Hii region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims. We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species. Methods. We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (~0.25–0.65 km s-1) allowed us to resolve the line profiles of the different species detected. Results. We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s-1 is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s-1 is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s-1 is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as Dfrac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km s-1 component, which also agree with our model predictions for an age of ~0.01 to a few 0.1 Myr. Conclusions. The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with Dfrac(N2H+) or Dfrac(HCO+), a more complete chemical modeling is require |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/201423407 |