A large time-step implicit moving mesh scheme for moving boundary problems
Velocity‐based moving mesh methods update the mesh at each time level by using a velocity equation with a time‐stepping scheme. A particular velocity‐based moving mesh method, based on conservation, uses explicit time‐stepping schemes with small time steps to avoid mesh tangling. However, this can p...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2014-01, Vol.30 (1), p.321-338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Velocity‐based moving mesh methods update the mesh at each time level by using a velocity equation with a time‐stepping scheme. A particular velocity‐based moving mesh method, based on conservation, uses explicit time‐stepping schemes with small time steps to avoid mesh tangling. However, this can prove to be impractical when long‐term behavior of the solution is of interest. Here, we present a semi‐implicit time‐stepping scheme which manipulates the structure of the velocity equation such that it resembles a variable‐coefficient heat equation. This enables the use of maximum/minimum principle which ensures that mesh tangling is avoided. It is also shown that this semi‐implicit scheme can be extended to a fully implicit time‐stepping scheme. Thus, the time‐step restriction imposed by explicit schemes is overcome without sacrificing mesh structure. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 321–338, 2014 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.21812 |