Electrochemical fabrication of a novel conducting metallopolymer nanoparticles and its electrocatalytic application

Nanoparticles of nickel-curcumin conducting polymer (Ni-Curc-NPs) were fabricated by a two steps electrochemical method. In the first step, nickel source was immobilized at the electrode surface in the form of nickel nanoparticles (NiNPs). Then, electropolymerization of Ni-curcumin was performed at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2013-10, Vol.109, p.823-827
Hauptverfasser: Kazemi, Sayed Habib, Mohamadi, Rahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoparticles of nickel-curcumin conducting polymer (Ni-Curc-NPs) were fabricated by a two steps electrochemical method. In the first step, nickel source was immobilized at the electrode surface in the form of nickel nanoparticles (NiNPs). Then, electropolymerization of Ni-curcumin was performed at the NiNPs modified electrode. These nanostructures were successfully employed for electrooxidative determination of glucose and significant increase in the electrochemical sensitivity and lower limit of detection were observed. •A novel two steps method for fabrication of nickel-curcumin conducting polymer was described.•Nickel-curcumine nanoparticles were easily prepared instead of thin film.•Ni-Curc-NPs modified electrode was successfully employed for electrooxidation of glucose.•Significant improvement in the sensitivity and limit of detection was observed. Present article is the first example of a novel two step electrochemical route for fabrication of nanoparticles of conducting metallopolymer of Ni-curcumin (Ni-Curc-NPs). Firstly, nickel nanoparticles (Ni-NPs) were electrochemically deposited on the electrode surface. Then, electropolymerization of Ni-Curc-NPs were performed at the electrode modified with Ni-NPs. These nanostructures were characterized using electrochemical methods including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and hydrodynamic amperometry, also surface analysis methods and electron microscopy including energy dispersive analysis of X-ray (EDAX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, application of the Ni-Curc-NPs modified electrode toward glucose electrooxidation was examined. A lower limit of detection and enhanced dynamic linear range for determination of glucose were observed at Ni-Curc-NPs modified electrode compared to Ni-NPs modified electrode.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2013.07.201