Electric-field-induced structure and optical properties of electrorheological fluids with attapulgite nanorods
Attapulgite (ATP) is a type of crystalloid hydrous magnesium-aluminum silicate mineral with natural one-dimensional (1D) fibrous morphology. In this study, the authors investigated the optical and mechanical performances of ATP nanorods in silicone oil under an electric field. It was observed that t...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2014-07, Vol.23 (7), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Attapulgite (ATP) is a type of crystalloid hydrous magnesium-aluminum silicate mineral with natural one-dimensional (1D) fibrous morphology. In this study, the authors investigated the optical and mechanical performances of ATP nanorods in silicone oil under an electric field. It was observed that the optical transmittance of ATP suspensions decreased rapidly under the low electric field, using ultraviolet-visible (UV-Vis) spectroscopy. The results of optical microscopy and scanning electron microscopy (SEM) indicated that the electromigration of ATP nanorods was the major cause of such an aberrant optical phenomenon. Further, the electrorheological (ER) response of the samples was measured by the height-controlled method. The change trend of the normal force was illustrated by the dynamic assembly behavior of ATP in the applied electric field. This work provided intuitive evidence for an in-depth understanding of the mechanism of ER fluids containing 1D dielectric materials. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/23/7/075005 |