Searching for Zimin patterns

In the area of pattern avoidability the central role is played by special words called Zimin patterns. The symbols of these patterns are treated as variables and the rank of the pattern is its number of variables. Zimin type of a word x is introduced here as the maximum rank of a Zimin pattern match...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2015-03, Vol.571, p.50-57
Hauptverfasser: Rytter, Wojciech, Shur, Arseny M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the area of pattern avoidability the central role is played by special words called Zimin patterns. The symbols of these patterns are treated as variables and the rank of the pattern is its number of variables. Zimin type of a word x is introduced here as the maximum rank of a Zimin pattern matching x. We show how to compute Zimin type of a word on-line in linear time. Consequently we get a quadratic time, linear-space algorithm for searching Zimin patterns in words. Then we demonstrate how the Zimin type of the length n prefix of the infinite Fibonacci word is related to the representation of n in the Fibonacci numeration system. Using this relation, we prove that Zimin types of such prefixes and Zimin patterns inside them can be found in logarithmic time. Finally, we give some upper bounds on the function f(n,k) such that every k-ary word of length at least f(n,k) has a factor that matches the rank n Zimin pattern.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2015.01.004