Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels
We describe an ultrasensitive electrochemical nucleic acid assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL)-related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2014-09, Vol.139 (17), p.4223-4230 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe an ultrasensitive electrochemical nucleic acid assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL)-related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation and used to label and amplify the target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The signal-amplified assay achieved a detection limit of 83 fM (5 × 10(-18) mol in 60 μL) targets oligonucleotides and has a 4-order-wide dynamic range of target concentration. The resulting assay allowed robust discrimination between the perfect match and a three-base mismatch sequence. When exposed to the full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of 1 × 10(-16) mol in 60 μL, corresponding to approximately 33 pg of the target gene. The high sensitivity and specificity of the assay enabled a PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15 in comparison to those obtained from negative cell line HL-60. The approach enables a simple, low-cost and ultrasensitive electrochemical nucleic acid detection in portable devices, point-of-care and early disease diagnostic applications. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c3an01156a |