Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions
In two dimensions, we study the compressible hydrodynamic flow of liquid crystals with periodic boundary conditions. As shown by Ding et al. (2013), when the parameter λ→∞ oo, the solutions to the compressible liquid crystal system approximate that of the incompressible one. Furthermore, Ding et al....
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2013-11, Vol.56 (11), p.2233-2250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In two dimensions, we study the compressible hydrodynamic flow of liquid crystals with periodic boundary conditions. As shown by Ding et al. (2013), when the parameter λ→∞ oo, the solutions to the compressible liquid crystal system approximate that of the incompressible one. Furthermore, Ding et al. (2013) proved that the regular incompressible limit solution is global in time with small enough initial data. In this paper, we show that the solution to the compressible liquid crystal flow also exists for all time, provided that is sufficiently large and the initial data are almost incompressible. |
---|---|
ISSN: | 1674-7283 1006-9283 1869-1862 |
DOI: | 10.1007/s11425-013-4620-2 |