A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem

We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2015-05, Vol.31 (3), p.950-976
Hauptverfasser: Achchab, Boujemâa, Agouzal, Abdellatif, Majdoubi, Adil, Meskine, Driss, Souissi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 976
container_issue 3
container_start_page 950
container_title Numerical methods for partial differential equations
container_volume 31
creator Achchab, Boujemâa
Agouzal, Abdellatif
Majdoubi, Adil
Meskine, Driss
Souissi, Ali
description We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015
doi_str_mv 10.1002/num.21929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3635379281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</originalsourceid><addsrcrecordid>eNp1kE9PwjAYxhujiYge_AZLvOhh0K5bux6JETQBPADirelKZ4rbOtstwre3MPVg4psm79vk97x_HgCuERwgCKNh1ZaDCLGInYAegiwNozgip6AHacxClLDXc3Dh3BZChBLEeoCPgtq4RlltrA6UtcYGohLF3mkX5P5TmUqaylelrt4CUdfW7HQpGm0qF5jcw_5pZxprai0DVRS6bnzhuaxQ5SU4y0Xh1NV37oPV-GF5_xhOnydP96NpKGOcspAqFmUyTSASCaapjDeYSZhgGccbxSjGKMsloRHBVEkcqwz6IALnGco3EGPcB7ddXz_3o1Wu4aV20m8jKmVaxxGhlBHqe3v05g-6Na31Nx8oQhJI0JG66yhpjXNW5by2_m675wjyg9XcW82PVnt22LGfulD7_0E-X81-FGGn0N773a9C2Hd-WDLh6_mEvyzS8XK2jvkCfwEZh5Bm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666506178</pqid></control><display><type>article</type><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</creator><creatorcontrib>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</creatorcontrib><description>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21929</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>a posteriori error estimator ; Approximation ; Constants ; Errors ; Estimators ; Mathematical analysis ; nonconforming finite elements ; reconstruction technics ; Robustness ; Saturation ; Three dimensional</subject><ispartof>Numerical methods for partial differential equations, 2015-05, Vol.31 (3), p.950-976</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</citedby><cites>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21929$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21929$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Achchab, Boujemâa</creatorcontrib><creatorcontrib>Agouzal, Abdellatif</creatorcontrib><creatorcontrib>Majdoubi, Adil</creatorcontrib><creatorcontrib>Meskine, Driss</creatorcontrib><creatorcontrib>Souissi, Ali</creatorcontrib><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</description><subject>a posteriori error estimator</subject><subject>Approximation</subject><subject>Constants</subject><subject>Errors</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>nonconforming finite elements</subject><subject>reconstruction technics</subject><subject>Robustness</subject><subject>Saturation</subject><subject>Three dimensional</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwjAYxhujiYge_AZLvOhh0K5bux6JETQBPADirelKZ4rbOtstwre3MPVg4psm79vk97x_HgCuERwgCKNh1ZaDCLGInYAegiwNozgip6AHacxClLDXc3Dh3BZChBLEeoCPgtq4RlltrA6UtcYGohLF3mkX5P5TmUqaylelrt4CUdfW7HQpGm0qF5jcw_5pZxprai0DVRS6bnzhuaxQ5SU4y0Xh1NV37oPV-GF5_xhOnydP96NpKGOcspAqFmUyTSASCaapjDeYSZhgGccbxSjGKMsloRHBVEkcqwz6IALnGco3EGPcB7ddXz_3o1Wu4aV20m8jKmVaxxGhlBHqe3v05g-6Na31Nx8oQhJI0JG66yhpjXNW5by2_m675wjyg9XcW82PVnt22LGfulD7_0E-X81-FGGn0N773a9C2Hd-WDLh6_mEvyzS8XK2jvkCfwEZh5Bm</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Achchab, Boujemâa</creator><creator>Agouzal, Abdellatif</creator><creator>Majdoubi, Adil</creator><creator>Meskine, Driss</creator><creator>Souissi, Ali</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><author>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>a posteriori error estimator</topic><topic>Approximation</topic><topic>Constants</topic><topic>Errors</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>nonconforming finite elements</topic><topic>reconstruction technics</topic><topic>Robustness</topic><topic>Saturation</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achchab, Boujemâa</creatorcontrib><creatorcontrib>Agouzal, Abdellatif</creatorcontrib><creatorcontrib>Majdoubi, Adil</creatorcontrib><creatorcontrib>Meskine, Driss</creatorcontrib><creatorcontrib>Souissi, Ali</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achchab, Boujemâa</au><au>Agouzal, Abdellatif</au><au>Majdoubi, Adil</au><au>Meskine, Driss</au><au>Souissi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2015-05</date><risdate>2015</risdate><volume>31</volume><issue>3</issue><spage>950</spage><epage>976</epage><pages>950-976</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.21929</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2015-05, Vol.31 (3), p.950-976
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_miscellaneous_1677967378
source Wiley Online Library Journals Frontfile Complete
subjects a posteriori error estimator
Approximation
Constants
Errors
Estimators
Mathematical analysis
nonconforming finite elements
reconstruction technics
Robustness
Saturation
Three dimensional
title A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20error%20analysis%20for%20nonconforming%20approximations%20of%20an%20anisotropic%20elliptic%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Achchab,%20Boujem%C3%A2a&rft.date=2015-05&rft.volume=31&rft.issue=3&rft.spage=950&rft.epage=976&rft.pages=950-976&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21929&rft_dat=%3Cproquest_cross%3E3635379281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666506178&rft_id=info:pmid/&rfr_iscdi=true