A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem
We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The effici...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2015-05, Vol.31 (3), p.950-976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 976 |
---|---|
container_issue | 3 |
container_start_page | 950 |
container_title | Numerical methods for partial differential equations |
container_volume | 31 |
creator | Achchab, Boujemâa Agouzal, Abdellatif Majdoubi, Adil Meskine, Driss Souissi, Ali |
description | We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015 |
doi_str_mv | 10.1002/num.21929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3635379281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</originalsourceid><addsrcrecordid>eNp1kE9PwjAYxhujiYge_AZLvOhh0K5bux6JETQBPADirelKZ4rbOtstwre3MPVg4psm79vk97x_HgCuERwgCKNh1ZaDCLGInYAegiwNozgip6AHacxClLDXc3Dh3BZChBLEeoCPgtq4RlltrA6UtcYGohLF3mkX5P5TmUqaylelrt4CUdfW7HQpGm0qF5jcw_5pZxprai0DVRS6bnzhuaxQ5SU4y0Xh1NV37oPV-GF5_xhOnydP96NpKGOcspAqFmUyTSASCaapjDeYSZhgGccbxSjGKMsloRHBVEkcqwz6IALnGco3EGPcB7ddXz_3o1Wu4aV20m8jKmVaxxGhlBHqe3v05g-6Na31Nx8oQhJI0JG66yhpjXNW5by2_m675wjyg9XcW82PVnt22LGfulD7_0E-X81-FGGn0N773a9C2Hd-WDLh6_mEvyzS8XK2jvkCfwEZh5Bm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666506178</pqid></control><display><type>article</type><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</creator><creatorcontrib>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</creatorcontrib><description>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21929</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>a posteriori error estimator ; Approximation ; Constants ; Errors ; Estimators ; Mathematical analysis ; nonconforming finite elements ; reconstruction technics ; Robustness ; Saturation ; Three dimensional</subject><ispartof>Numerical methods for partial differential equations, 2015-05, Vol.31 (3), p.950-976</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</citedby><cites>FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21929$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21929$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Achchab, Boujemâa</creatorcontrib><creatorcontrib>Agouzal, Abdellatif</creatorcontrib><creatorcontrib>Majdoubi, Adil</creatorcontrib><creatorcontrib>Meskine, Driss</creatorcontrib><creatorcontrib>Souissi, Ali</creatorcontrib><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</description><subject>a posteriori error estimator</subject><subject>Approximation</subject><subject>Constants</subject><subject>Errors</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>nonconforming finite elements</subject><subject>reconstruction technics</subject><subject>Robustness</subject><subject>Saturation</subject><subject>Three dimensional</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwjAYxhujiYge_AZLvOhh0K5bux6JETQBPADirelKZ4rbOtstwre3MPVg4psm79vk97x_HgCuERwgCKNh1ZaDCLGInYAegiwNozgip6AHacxClLDXc3Dh3BZChBLEeoCPgtq4RlltrA6UtcYGohLF3mkX5P5TmUqaylelrt4CUdfW7HQpGm0qF5jcw_5pZxprai0DVRS6bnzhuaxQ5SU4y0Xh1NV37oPV-GF5_xhOnydP96NpKGOcspAqFmUyTSASCaapjDeYSZhgGccbxSjGKMsloRHBVEkcqwz6IALnGco3EGPcB7ddXz_3o1Wu4aV20m8jKmVaxxGhlBHqe3v05g-6Na31Nx8oQhJI0JG66yhpjXNW5by2_m675wjyg9XcW82PVnt22LGfulD7_0E-X81-FGGn0N773a9C2Hd-WDLh6_mEvyzS8XK2jvkCfwEZh5Bm</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Achchab, Boujemâa</creator><creator>Agouzal, Abdellatif</creator><creator>Majdoubi, Adil</creator><creator>Meskine, Driss</creator><creator>Souissi, Ali</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</title><author>Achchab, Boujemâa ; Agouzal, Abdellatif ; Majdoubi, Adil ; Meskine, Driss ; Souissi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-7e92bc8501a5378c4d39c053c44de97331bfc672637ec34eb00006a3fb1fd0333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>a posteriori error estimator</topic><topic>Approximation</topic><topic>Constants</topic><topic>Errors</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>nonconforming finite elements</topic><topic>reconstruction technics</topic><topic>Robustness</topic><topic>Saturation</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achchab, Boujemâa</creatorcontrib><creatorcontrib>Agouzal, Abdellatif</creatorcontrib><creatorcontrib>Majdoubi, Adil</creatorcontrib><creatorcontrib>Meskine, Driss</creatorcontrib><creatorcontrib>Souissi, Ali</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achchab, Boujemâa</au><au>Agouzal, Abdellatif</au><au>Majdoubi, Adil</au><au>Meskine, Driss</au><au>Souissi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2015-05</date><risdate>2015</risdate><volume>31</volume><issue>3</issue><spage>950</spage><epage>976</epage><pages>950-976</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.21929</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2015-05, Vol.31 (3), p.950-976 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677967378 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | a posteriori error estimator Approximation Constants Errors Estimators Mathematical analysis nonconforming finite elements reconstruction technics Robustness Saturation Three dimensional |
title | A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20error%20analysis%20for%20nonconforming%20approximations%20of%20an%20anisotropic%20elliptic%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Achchab,%20Boujem%C3%A2a&rft.date=2015-05&rft.volume=31&rft.issue=3&rft.spage=950&rft.epage=976&rft.pages=950-976&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21929&rft_dat=%3Cproquest_cross%3E3635379281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666506178&rft_id=info:pmid/&rfr_iscdi=true |