A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem
We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The effici...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2015-05, Vol.31 (3), p.950-976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.21929 |