A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem

We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2015-05, Vol.31 (3), p.950-976
Hauptverfasser: Achchab, Boujemâa, Agouzal, Abdellatif, Majdoubi, Adil, Meskine, Driss, Souissi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015
ISSN:0749-159X
1098-2426
DOI:10.1002/num.21929