Mobius geometry of three-dimensional Wintgen ideal submanifolds in S super(5)

Wintgen ideal submanifolds in space forms are those ones attaining equality at every point in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the normal scalar curvature. This property is conformal invariant; hence we study them in the framework of Mobius geo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2014-06, Vol.57 (6), p.1203-1220
Hauptverfasser: XIE, ZhenXiao, LI, TongZhu, MA, Xiang, WANG, ChangPing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wintgen ideal submanifolds in space forms are those ones attaining equality at every point in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the normal scalar curvature. This property is conformal invariant; hence we study them in the framework of Mobius geometry, and restrict to three-dimensional Wintgen ideal submanifolds in S super(5). In particular, we give Mobius characterizations for minimal ones among them, which are also known as (3-dimensional) austere submanifolds (in 5-dimensional space forms).
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-013-4664-3