Experimental Analysis of a Vertical and Flexible Cylinder in Water: Response to Top Motion Excitation and Parametric Resonance
Experiments with a vertical, flexible, and submerged cylinder were carried out to investigate fundamental aspects of risers dynamics subjected to harmonic excitation at the top. The flexible model was designed aiming a high level of dynamic similarity with a real riser. Vertical motion, with amplitu...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2015-06, Vol.137 (3), p.np-np |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experiments with a vertical, flexible, and submerged cylinder were carried out to investigate fundamental aspects of risers dynamics subjected to harmonic excitation at the top. The flexible model was designed aiming a high level of dynamic similarity with a real riser. Vertical motion, with amplitude of 1% of the unstretched length, was imposed with a device driven by a servomotor. Responses to distinct exciting frequency ratios were investigated, namely, ft:fN,1 = 1:3; 1:1; 2:1, and 3:1. Cartesian coordinates of 43 monitored points positioned all along the span were experimentally acquired by using an optical tracking system. A simple Galerkin's projection applied for modal decomposition, combined with standard Mathieu chart analysis, led to the identification of parametric resonances. A curious finding is that the Mathieu instability may simultaneously occur in more than one mode, leading to interesting dynamic behaviors, also revealed through standard power spectra analysis and displacement scalograms. |
---|---|
ISSN: | 1048-9002 1528-8927 |
DOI: | 10.1115/1.4029265 |