Energy Detection Technique for Adaptive Spectrum Sensing

The increasing scarcity in the available spectrum for wireless communication is one of the current bottlenecks impairing further deployment of services and coverage. The proper exploitation of white spaces in the radio spectrum requires fast, robust, and accurate methods for their detection. This pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2015-03, Vol.63 (3), p.617-627
Hauptverfasser: Sobron, Iker, Diniz, Paulo S. R., Martins, Wallace A., Velez, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing scarcity in the available spectrum for wireless communication is one of the current bottlenecks impairing further deployment of services and coverage. The proper exploitation of white spaces in the radio spectrum requires fast, robust, and accurate methods for their detection. This paper proposes a new strategy to detect adaptively white spaces in the radio spectrum. Such strategy works in cognitive radio (CR) networks whose nodes perform spectrum sensing based on energy detection in a cooperative way or not. The main novelty of the proposal is the use of a cost-function that depends upon a single parameter which, by itself, contains the aggregate information about the presence or absence of primary users. The detection of white spaces based on this parameter is able to improve significantly the deflection coefficient associated with the detector, as compared to other state-of-the-art algorithms. In fact, simulation results show that the proposed algorithm outperforms by far other competing algorithms. For example, our proposal can yield a probability of miss-detection 20 times smaller than that of an optimal soft-combiner solution in a cooperative setup with a predefined probability of false alarm of 0.1.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2015.2394436