Speaker Identification Using Discrete Wavelet Transform
This study presents an experimental evaluation of Discrete Wavelet Transforms for use in speaker identification. The features are tested using speech data provided by the CHAINS corpus. This system consists of two stages: Feature extraction stage and the identification stage. Parameters are extracte...
Gespeichert in:
Veröffentlicht in: | Journal of computer science 2015-01, Vol.11 (1), p.53-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents an experimental evaluation of Discrete Wavelet Transforms for use in speaker identification. The features are tested using speech data provided by the CHAINS corpus. This system consists of two stages: Feature extraction stage and the identification stage. Parameters are extracted and used in a closed-set text-independent speaker identification task. In this study, the signals are pre-processed and features are extracted using discrete wavelet transforms. The energy of the wavelet coefficients are used for training the Gaussian Mixture Model. Daubechies wavelets are used and the speech samples are analyzed using 8 levels of decomposition. |
---|---|
ISSN: | 1549-3636 1552-6607 |
DOI: | 10.3844/jcssp.2015.53.56 |