High-performance lithium/sulfur batteries by decorating CMK-3/S cathodes with DNA
Prohibiting lithium polysulfides from being dissolved to electrolyte is the most critical challenge for pursuing high-performance Li/S batteries. Taking full advantage of interactions between polysulfides and functional groups of third-party additives has been proven to be an efficient strategy. In...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (14), p.7241-7247 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prohibiting lithium polysulfides from being dissolved to electrolyte is the most critical challenge for pursuing high-performance Li/S batteries. Taking full advantage of interactions between polysulfides and functional groups of third-party additives has been proven to be an efficient strategy. In the present work, we selected DNA to decorate CMK-3/S cathodes. The -P&z.dbd; O and &z.dbd; N- sites of the constituent deoxyribonucleotides of DNA are demonstrated to be capable of anchoring polysulfides through our DFT calculations. The experimental results show that adding a small amount of DNA into the CMK-3/S composite significantly improved the cyclic performance. In particular, with a moderate DNA loading rate, the DNA post-loading procedure resulted in a discharge capacity of 771 mA h g super(-1) at 0.1 C after 200 cycles (70.7% retention of the initial), which yielded slightly improved performance as compared to the DNA pre-loading procedure. The proposed DNA decorating scheme may provide an applicable technical solution for developing high-performance Li/S batteries. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c4ta06083k |