Comparison of PLGA Reinforcement Method for Carbonate Apatite Foam
Carbonate apatite (CO3Ap) foam with interconnecting porous structure is a potential candidate as bone substitute material owing to its similarity to the cancellous bone with respect to composition, morphology and osteoclastic degradation. However, it is brittle and difficult to handle. This is thoug...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2012-11, Vol.529-530, p.417-420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbonate apatite (CO3Ap) foam with interconnecting porous structure is a potential candidate as bone substitute material owing to its similarity to the cancellous bone with respect to composition, morphology and osteoclastic degradation. However, it is brittle and difficult to handle. This is thought to be caused by no organic material in the CO3Ap foam. The aim of this study is to reinforce the CO3Ap foam with poly (DL-lactide-co-glycolide) (PLGA). Immersion and vacuum infiltration methods were compared as reinforcing methods. Compressive strength of unreinforced CO3Ap foam, (12.0 ± 4.9 kPa) increased after PLGA reinforcement by immersion (187.6 ± 57.6 kPa) or by vacuum infiltration (407 ± 111.4 kPa). Scanning electron microscopy (SEM) showed the preservation of full interconnecting porous structure of CO3Ap foam after PLGA reinforcement using immersion or vacuum infiltration. Interface between the PLGA and CO3Ap foam, however revealed that no gap was found between the PLGA and CO3Ap foam interface when vacuum was used to reinforce the PLGA whereas a gap was found when simple immersion was used. Strong interface between PLGA and CO3Ap foam is therefore thought to be the key for higher compressive strength. In conclusion, vacuum infiltration is a more efficient method to reinforce the CO3Ap foam with PLGA for improving the mechanical strength without sacrificing the cancellous bone-type morphology. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.529-530.417 |