Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes

Redox protein cytochrome c was immobilized at high electrochemically accessible loading on mesoporous films of antimony doped tin oxide (ATO) exhibiting high conductivity, transparency and a large surface area. The grafting was achieved by covalent attachment of the protein to the electrode surface....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2014-01, Vol.116, p.1-8
Hauptverfasser: Müller, Vesna, Rathousky, Jiri, Fattakhova-Rohlfing, Dina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Redox protein cytochrome c was immobilized at high electrochemically accessible loading on mesoporous films of antimony doped tin oxide (ATO) exhibiting high conductivity, transparency and a large surface area. The grafting was achieved by covalent attachment of the protein to the electrode surface. Alternatively, cytochrome c was effectively adsorbed on the ATO electrode surface due to strong electrostatic interaction between the positively charged cytochrome c and the negatively charged ATO surface. The amount of electrochemically addressable cytochrome c is proportional to the specific surface area, reaching up to 440pmol/cm2 and 600pmol/cm2 for covalently attached and adsorbed protein, respectively, for the 370nm thick films. The covalently attached protein exhibits substantially higher stability towards leaching than the adsorbed one. The combination of transparent conducting porous electrode matrix with the electroactive proteins is promising for the development of efficient bio-optoelectronic devices and for in situ spectroelectrochemical studies of biomolecules.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2013.10.136