The Rolling Bearing Fault Feature Extraction Based on the LMD and Envelope Demodulation
Since the working process of rolling bearings is a complex and nonstationary dynamic process, the common time and frequency characteristics of vibration signals are submerged in the noise. Thus, it is the key of fault diagnosis to extract the fault feature from vibration signal. Therefore, a fault f...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the working process of rolling bearings is a complex and nonstationary dynamic process, the common time and frequency characteristics of vibration signals are submerged in the noise. Thus, it is the key of fault diagnosis to extract the fault feature from vibration signal. Therefore, a fault feature extraction method for the rolling bearing based on the local mean decomposition (LMD) and envelope demodulation is proposed. Firstly, decompose the original vibration signal by LMD to get a series of production functions (PFs). Then dispose the envelope demodulation analysis on PF component. Finally, perform Fourier Transform on the demodulation signals and judge failure condition according to the dominant frequency of the spectrum. The results show that the proposed method can correctly extract the fault characteristics to diagnose faults. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2015/429185 |