Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging

An effective optimum charging technique for lithium ion batteries using a universal voltage protocol (UVP) that can accommodate cell aging is presented here. This charging method demands less learning to varying state-of-health (SOH) conditions with potential to improve charging efficiency and cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2015-01, Vol.274, p.957-964
Hauptverfasser: Guo, Zhen, Liaw, Bor Yann, Qiu, Xinping, Gao, Lanlan, Zhang, Changshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effective optimum charging technique for lithium ion batteries using a universal voltage protocol (UVP) that can accommodate cell aging is presented here. This charging method demands less learning to varying state-of-health (SOH) conditions with potential to improve charging efficiency and cycle life. The simplicity of UVP makes the implementation easier than the conventional constant current-constant voltage (CC-CV)-based methods. Here, the mathematical formulation, optimization targets (e.g. minimal time) and constraints (terminal voltages and other instrumental and cell electrochemistry-limited ones) are explained from the protocol design considerations. An equivalent circuit model was used and its parameters derived from the analysis of test data, which could yield a nonlinear varying current profile (VCP) by simulation and a genetic algorithm-based optimization. Both UVP and VCP were used in the validation to illustrate better charging efficiency and capacity retention, which showed a much improved cycle life.
ISSN:0378-7753
DOI:10.1016/j.jpowsour.2014.10.185