Difference of Microstructure and Fatigue Properties between Forged and Rolled Ti-6Al-4V
In the Present Study, the Effects of the Microstructural Morphologies of a Ti-6Al-4V (Ti-64) Alloy on its Fatigue Behavior Were Investigated. Ti-64 Bars Were Subjected to Two Different Thermo-Mechanical Processing Methods. The First Sample, Referred to as Material-A, Had a Forged Microstructure with...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2012-01, Vol.508, p.161-165 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Present Study, the Effects of the Microstructural Morphologies of a Ti-6Al-4V (Ti-64) Alloy on its Fatigue Behavior Were Investigated. Ti-64 Bars Were Subjected to Two Different Thermo-Mechanical Processing Methods. The First Sample, Referred to as Material-A, Had a Forged Microstructure with the Average Primary α Volume Fraction of 44%. The Second One, Referred to as Material-B, Had a Hot-Rolled Microstructure with the Average Primary α Volume Fraction of 43%. Fatigue Tests Were Performed on each Sample to Obtain S-N Curves. The Microstructure of each Sample Was Observed Using an Optical Microscopy in Order to Measure the Grain Sizes of the Primary α and Secondary α Phases. The Results of the Fatigue Tests Indicated that Material-B Demonstrates Better Fatigue Strength than Material-A. The Microstructure of the Longitudinal Section of each Material Was Also Observed to Analyze the Results of the Fatigue Tests. The Measured Diameters and Volume Fractions of the Primary α Phases of the Two Types of Materials Are Similar. On the other Hand, the Secondary α Width of each Material Is Different. It Is Found that Fatigue Strength Is Related to the Width of the Secondary α Phase. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.508.161 |