Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring

We introduce a new iterative scheme for solving linear ill-posed problems, similar to nonstationary iterated Tikhonov regularization, but with an approximation of the underlying operator to be used for the Tikhonov equations. For image deblurring problems, such an approximation can be a discrete dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2013-09, Vol.29 (9), p.95008-16
Hauptverfasser: Donatelli, Marco, Hanke, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new iterative scheme for solving linear ill-posed problems, similar to nonstationary iterated Tikhonov regularization, but with an approximation of the underlying operator to be used for the Tikhonov equations. For image deblurring problems, such an approximation can be a discrete deconvolution that operates entirely in the Fourier domain. We provide a theoretical analysis of the new scheme, using regularization parameters that are chosen by a certain adaptive strategy. The numerical performance of this method turns out to be superior to state-of-the-art iterative methods, including the conjugate gradient iteration for the normal equation, with and without additional preconditioning.
ISSN:0266-5611
1361-6420
DOI:10.1088/0266-5611/29/9/095008