Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph
We improve the available upper and lower bounds for the minimal size of the support of an eigenfunction of the Hamming graph H ( n, q ), where q > 2. In particular, the size of a minimal 1-perfect bitrade in H ( n, q ) is estimated. We show that the size of such a bitrade is at least 2 n −( n −1)...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2015, Vol.9 (1), p.141-146 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We improve the available upper and lower bounds for the minimal size of the support of an eigenfunction of the Hamming graph
H
(
n, q
), where
q
> 2. In particular, the size of a minimal 1-perfect bitrade in
H
(
n, q
) is estimated. We show that the size of such a bitrade is at least 2
n
−(
n
−1)/
q
(
q
− 2)
(
n
−1)/
q
for
q
≥ 4 and 3
n
/2
(1 −
O
(1/
n
)) for
q
= 3. Moreover, for
n
≡ 1 mod
q
, where
q
is a prime power, we propose a construction of bitrades of size
q
(
q
−2)(
n
−1)/
q
2
(
n
−1)/
q
+1
. |
---|---|
ISSN: | 1990-4789 1990-4797 |
DOI: | 10.1134/S1990478915010159 |