PE/Chlorinated-PE Blends and PE/Chlorinated-PE/Graphene Oxide Nanocomposites: Morphology, Phase Miscibility, and Interfacial Interactions

The microstructure of high‐density polyethylene (PE) and chlorinated polyethylene (CPE) blends, as well as their composites with graphene oxide (GO) is characterized. The filler dispersion improves as the extent of chlorination is enhanced. The platelets are also observed to be covered with a harder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2014-02, Vol.215 (3), p.255-268
Hauptverfasser: Mittal, Vikas, Luckachan, Gisha Elizabeth, Matsko, Nadejda B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure of high‐density polyethylene (PE) and chlorinated polyethylene (CPE) blends, as well as their composites with graphene oxide (GO) is characterized. The filler dispersion improves as the extent of chlorination is enhanced. The platelets are also observed to be covered with a harder phase by atomic force microscopy (AFM), due to the stronger nucleating action of the graphene clusters, along with the alignment or ordering of the CPE phase at the interface with the filler. The filler and the CPE phases are observed to undergo chemical interaction during solution mixing, which enhances during melt mixing of the CPE–GO masterbatch with the PE matrix. The majority of the Cl atoms in the CPE chains are observed to be depleted during chemical reaction or thermal degradation at the melt compounding temperature, resulting in chlorine‐free materials. The microstructure of high‐density polyethylene (PE) and chlorinated polyethylene (CPE) blends, as well as their composites with graphene oxide (GO) are characterized. The filler dispersion improves as the extent of chlorination is enhanced. The majority of the Cl atoms in the CPE chains are observed to be depleted during chemical reaction or thermal degradation at the melt compounding temperature, resulting in chlorine‐free materials.
ISSN:1022-1352
1521-3935
DOI:10.1002/macp.201300613