Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography
In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin me...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2014-08, Vol.270, p.506-531 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | |
container_start_page | 506 |
container_title | Journal of computational physics |
container_volume | 270 |
creator | Jauberteau, F. Temam, R.M. Tribbia, J. |
description | In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1Δt. |
doi_str_mv | 10.1016/j.jcp.2014.03.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677930227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911400223X</els_id><sourcerecordid>1677930227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFSWFbpL-gN50zMUbybJli5xKSNPChl6as5DH41iLbLmSnG3u_eHVdnNOYGBmeB_weIR84WzLGZfX--0elm3JeLVlIo_8QDacKVaUDZdnZMNYyQulFP9EzmPcM8baumo35O_D6pKNYBxeD8FAsn42jsaEC40w4oSRDj7QNCKd1wmDhSNsp9WZI5f64T8WfMr__ETjaJzzB3owCQMd8hnpwaaRgp8Wh3_okj18b4Emv_inYJbx5ZJ8HIyL-Pl1X5DHb3e_br8Xu5_3P26_7goQvE5FLwQHIeu6qxCqGlnXS4UDdA10RpaCN2yQnWi5km0HEtq6VNLwCtD0DaIQF-Tq5LsE_3vFmPSUo6NzZka_Rs1l0yjByrJ5n1rLhsm2FSpT-YkKwccYcNBLsJMJL5ozfSxH73UuRx_L0UzkkVlzc9JgjvtsMegIFmfA3gaEpHtv31D_A33Imxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567068839</pqid></control><display><type>article</type><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><source>Elsevier ScienceDirect Journals</source><creator>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</creator><creatorcontrib>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</creatorcontrib><description>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1<N and/or a time step Δt′>Δt.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.03.036</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Central processing units ; Complex varying topography ; Fractional step schemes ; Galerkin methods ; Mathematical analysis ; Mathematical models ; Multiscale schemes ; Operators ; Rotating ; Rotating shallow water equations ; Time integration ; Topography</subject><ispartof>Journal of computational physics, 2014-08, Vol.270, p.506-531</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911400223X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jauberteau, F.</creatorcontrib><creatorcontrib>Temam, R.M.</creatorcontrib><creatorcontrib>Tribbia, J.</creatorcontrib><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><title>Journal of computational physics</title><description>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1<N and/or a time step Δt′>Δt.</description><subject>Central processing units</subject><subject>Complex varying topography</subject><subject>Fractional step schemes</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiscale schemes</subject><subject>Operators</subject><subject>Rotating</subject><subject>Rotating shallow water equations</subject><subject>Time integration</subject><subject>Topography</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFSWFbpL-gN50zMUbybJli5xKSNPChl6as5DH41iLbLmSnG3u_eHVdnNOYGBmeB_weIR84WzLGZfX--0elm3JeLVlIo_8QDacKVaUDZdnZMNYyQulFP9EzmPcM8baumo35O_D6pKNYBxeD8FAsn42jsaEC40w4oSRDj7QNCKd1wmDhSNsp9WZI5f64T8WfMr__ETjaJzzB3owCQMd8hnpwaaRgp8Wh3_okj18b4Emv_inYJbx5ZJ8HIyL-Pl1X5DHb3e_br8Xu5_3P26_7goQvE5FLwQHIeu6qxCqGlnXS4UDdA10RpaCN2yQnWi5km0HEtq6VNLwCtD0DaIQF-Tq5LsE_3vFmPSUo6NzZka_Rs1l0yjByrJ5n1rLhsm2FSpT-YkKwccYcNBLsJMJL5ozfSxH73UuRx_L0UzkkVlzc9JgjvtsMegIFmfA3gaEpHtv31D_A33Imxo</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jauberteau, F.</creator><creator>Temam, R.M.</creator><creator>Tribbia, J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><author>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Central processing units</topic><topic>Complex varying topography</topic><topic>Fractional step schemes</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiscale schemes</topic><topic>Operators</topic><topic>Rotating</topic><topic>Rotating shallow water equations</topic><topic>Time integration</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauberteau, F.</creatorcontrib><creatorcontrib>Temam, R.M.</creatorcontrib><creatorcontrib>Tribbia, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauberteau, F.</au><au>Temam, R.M.</au><au>Tribbia, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</atitle><jtitle>Journal of computational physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>270</volume><spage>506</spage><epage>531</epage><pages>506-531</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1<N and/or a time step Δt′>Δt.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.03.036</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2014-08, Vol.270, p.506-531 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677930227 |
source | Elsevier ScienceDirect Journals |
subjects | Central processing units Complex varying topography Fractional step schemes Galerkin methods Mathematical analysis Mathematical models Multiscale schemes Operators Rotating Rotating shallow water equations Time integration Topography |
title | Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale/fractional%20step%20schemes%20for%20the%20numerical%20simulation%20of%20the%20rotating%20shallow%20water%20flows%20with%20complex%20periodic%20topography&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Jauberteau,%20F.&rft.date=2014-08-01&rft.volume=270&rft.spage=506&rft.epage=531&rft.pages=506-531&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.03.036&rft_dat=%3Cproquest_cross%3E1677930227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567068839&rft_id=info:pmid/&rft_els_id=S002199911400223X&rfr_iscdi=true |