Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography

In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-08, Vol.270, p.506-531
Hauptverfasser: Jauberteau, F., Temam, R.M., Tribbia, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue
container_start_page 506
container_title Journal of computational physics
container_volume 270
creator Jauberteau, F.
Temam, R.M.
Tribbia, J.
description In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1Δt.
doi_str_mv 10.1016/j.jcp.2014.03.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677930227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911400223X</els_id><sourcerecordid>1677930227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFSWFbpL-gN50zMUbybJli5xKSNPChl6as5DH41iLbLmSnG3u_eHVdnNOYGBmeB_weIR84WzLGZfX--0elm3JeLVlIo_8QDacKVaUDZdnZMNYyQulFP9EzmPcM8baumo35O_D6pKNYBxeD8FAsn42jsaEC40w4oSRDj7QNCKd1wmDhSNsp9WZI5f64T8WfMr__ETjaJzzB3owCQMd8hnpwaaRgp8Wh3_okj18b4Emv_inYJbx5ZJ8HIyL-Pl1X5DHb3e_br8Xu5_3P26_7goQvE5FLwQHIeu6qxCqGlnXS4UDdA10RpaCN2yQnWi5km0HEtq6VNLwCtD0DaIQF-Tq5LsE_3vFmPSUo6NzZka_Rs1l0yjByrJ5n1rLhsm2FSpT-YkKwccYcNBLsJMJL5ozfSxH73UuRx_L0UzkkVlzc9JgjvtsMegIFmfA3gaEpHtv31D_A33Imxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567068839</pqid></control><display><type>article</type><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><source>Elsevier ScienceDirect Journals</source><creator>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</creator><creatorcontrib>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</creatorcontrib><description>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1&lt;N and/or a time step Δt′&gt;Δt.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.03.036</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Central processing units ; Complex varying topography ; Fractional step schemes ; Galerkin methods ; Mathematical analysis ; Mathematical models ; Multiscale schemes ; Operators ; Rotating ; Rotating shallow water equations ; Time integration ; Topography</subject><ispartof>Journal of computational physics, 2014-08, Vol.270, p.506-531</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911400223X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jauberteau, F.</creatorcontrib><creatorcontrib>Temam, R.M.</creatorcontrib><creatorcontrib>Tribbia, J.</creatorcontrib><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><title>Journal of computational physics</title><description>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1&lt;N and/or a time step Δt′&gt;Δt.</description><subject>Central processing units</subject><subject>Complex varying topography</subject><subject>Fractional step schemes</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiscale schemes</subject><subject>Operators</subject><subject>Rotating</subject><subject>Rotating shallow water equations</subject><subject>Time integration</subject><subject>Topography</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFSWFbpL-gN50zMUbybJli5xKSNPChl6as5DH41iLbLmSnG3u_eHVdnNOYGBmeB_weIR84WzLGZfX--0elm3JeLVlIo_8QDacKVaUDZdnZMNYyQulFP9EzmPcM8baumo35O_D6pKNYBxeD8FAsn42jsaEC40w4oSRDj7QNCKd1wmDhSNsp9WZI5f64T8WfMr__ETjaJzzB3owCQMd8hnpwaaRgp8Wh3_okj18b4Emv_inYJbx5ZJ8HIyL-Pl1X5DHb3e_br8Xu5_3P26_7goQvE5FLwQHIeu6qxCqGlnXS4UDdA10RpaCN2yQnWi5km0HEtq6VNLwCtD0DaIQF-Tq5LsE_3vFmPSUo6NzZka_Rs1l0yjByrJ5n1rLhsm2FSpT-YkKwccYcNBLsJMJL5ozfSxH73UuRx_L0UzkkVlzc9JgjvtsMegIFmfA3gaEpHtv31D_A33Imxo</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jauberteau, F.</creator><creator>Temam, R.M.</creator><creator>Tribbia, J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</title><author>Jauberteau, F. ; Temam, R.M. ; Tribbia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d331c3655b4ec45e0bd69efcb7cba623170f6b381968bc6c85296a14cead7ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Central processing units</topic><topic>Complex varying topography</topic><topic>Fractional step schemes</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiscale schemes</topic><topic>Operators</topic><topic>Rotating</topic><topic>Rotating shallow water equations</topic><topic>Time integration</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauberteau, F.</creatorcontrib><creatorcontrib>Temam, R.M.</creatorcontrib><creatorcontrib>Tribbia, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauberteau, F.</au><au>Temam, R.M.</au><au>Tribbia, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography</atitle><jtitle>Journal of computational physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>270</volume><spage>506</spage><epage>531</epage><pages>506-531</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1&lt;N and/or a time step Δt′&gt;Δt.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.03.036</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-08, Vol.270, p.506-531
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1677930227
source Elsevier ScienceDirect Journals
subjects Central processing units
Complex varying topography
Fractional step schemes
Galerkin methods
Mathematical analysis
Mathematical models
Multiscale schemes
Operators
Rotating
Rotating shallow water equations
Time integration
Topography
title Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale/fractional%20step%20schemes%20for%20the%20numerical%20simulation%20of%20the%20rotating%20shallow%20water%20flows%20with%20complex%20periodic%20topography&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Jauberteau,%20F.&rft.date=2014-08-01&rft.volume=270&rft.spage=506&rft.epage=531&rft.pages=506-531&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.03.036&rft_dat=%3Cproquest_cross%3E1677930227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567068839&rft_id=info:pmid/&rft_els_id=S002199911400223X&rfr_iscdi=true