Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography
In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin me...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2014-08, Vol.270, p.506-531 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study several multiscale/fractional step schemes for the numerical solution of the rotating shallow water equations with complex topography. We consider the case of periodic boundary conditions (f-plane model). Spatial discretization is obtained using a Fourier spectral Galerkin method. For the schemes presented in this paper we consider two approaches. The first approach (multiscale schemes) is based on topography scale separation and the numerical time integration is function of the scales. The second approach is based on a splitting of the operators, and the time integration method is function of the operator considered (fractional step schemes). The numerical results obtained are compared with the explicit reference scheme (Leap-Frog scheme). With these multiscale/fractional step schemes the objective is to propose new schemes giving numerical results similar to those obtained using only one uniform fine grid N×N and a time step Δt, but with a CPU time near the CPU time needed when using only one coarse grid N1×N1, N1Δt. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2014.03.036 |