A PDE based Implementation of the Hull&White Model for Cashflow Derivatives

SummaryA new implementation for the one-dimensional Hull&White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2003-09, Vol.18 (3-4), p.417-434
Hauptverfasser: Meyer, Sascha, Schwarz, Willi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 3-4
container_start_page 417
container_title Computational statistics
container_volume 18
creator Meyer, Sascha
Schwarz, Willi
description SummaryA new implementation for the one-dimensional Hull&White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.
doi_str_mv 10.1007/BF03354607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677928339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677928339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-206172fb36de74a897ba900199fe5080a0dc1505dec88eba46aef58559fc83333</originalsourceid><addsrcrecordid>eNpd0EtLw0AUBeBBFKzVjb9gQBARoncmmdey9mGLFV0oLsMkuUNTkk7NJBX_vSkVBM_mbD4ul0PIJYM7BqDuH2YQxyKRoI7IgEkWR0YKfUwGYJI4SkDyU3IWwhqAc8XZgDyN6OtkSjMbsKCLelthjZvWtqXfUO9ou0I676rq-mNVtkiffYEVdb6hYxtWrvJfdIJNuev9DsM5OXG2Cnjx20PyPpu-jefR8uVxMR4to5wnpo04SKa4y2JZoEqsNiqzBoAZ41CABgtFzgSIAnOtMbOJtOiEFsK4XMd9huTmcHfb-M8OQ5vWZcixquwGfRdSJpUyvKemp1f_6Np3zab_LuVcM6kTI_fq9qDyxofQoEu3TVnb5jtlkO53Tf92jX8AvHFnsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281684969</pqid></control><display><type>article</type><title>A PDE based Implementation of the Hull&amp;White Model for Cashflow Derivatives</title><source>Springer Nature - Complete Springer Journals</source><creator>Meyer, Sascha ; Schwarz, Willi</creator><creatorcontrib>Meyer, Sascha ; Schwarz, Willi</creatorcontrib><description>SummaryA new implementation for the one-dimensional Hull&amp;White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/BF03354607</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bonding ; Calibration ; Cash flow ; Computation ; Convergence ; Derivatives ; Heat equations ; Invariants ; Martingales ; Mathematical models ; Partial differential equations ; Statistics ; Thermodynamics ; Zero coupon bonds</subject><ispartof>Computational statistics, 2003-09, Vol.18 (3-4), p.417-434</ispartof><rights>Computational Statistics is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-206172fb36de74a897ba900199fe5080a0dc1505dec88eba46aef58559fc83333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Meyer, Sascha</creatorcontrib><creatorcontrib>Schwarz, Willi</creatorcontrib><title>A PDE based Implementation of the Hull&amp;White Model for Cashflow Derivatives</title><title>Computational statistics</title><description>SummaryA new implementation for the one-dimensional Hull&amp;White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.</description><subject>Bonding</subject><subject>Calibration</subject><subject>Cash flow</subject><subject>Computation</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Heat equations</subject><subject>Invariants</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Statistics</subject><subject>Thermodynamics</subject><subject>Zero coupon bonds</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0EtLw0AUBeBBFKzVjb9gQBARoncmmdey9mGLFV0oLsMkuUNTkk7NJBX_vSkVBM_mbD4ul0PIJYM7BqDuH2YQxyKRoI7IgEkWR0YKfUwGYJI4SkDyU3IWwhqAc8XZgDyN6OtkSjMbsKCLelthjZvWtqXfUO9ou0I676rq-mNVtkiffYEVdb6hYxtWrvJfdIJNuev9DsM5OXG2Cnjx20PyPpu-jefR8uVxMR4to5wnpo04SKa4y2JZoEqsNiqzBoAZ41CABgtFzgSIAnOtMbOJtOiEFsK4XMd9huTmcHfb-M8OQ5vWZcixquwGfRdSJpUyvKemp1f_6Np3zab_LuVcM6kTI_fq9qDyxofQoEu3TVnb5jtlkO53Tf92jX8AvHFnsg</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Meyer, Sascha</creator><creator>Schwarz, Willi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030901</creationdate><title>A PDE based Implementation of the Hull&amp;White Model for Cashflow Derivatives</title><author>Meyer, Sascha ; Schwarz, Willi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-206172fb36de74a897ba900199fe5080a0dc1505dec88eba46aef58559fc83333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bonding</topic><topic>Calibration</topic><topic>Cash flow</topic><topic>Computation</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Heat equations</topic><topic>Invariants</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Statistics</topic><topic>Thermodynamics</topic><topic>Zero coupon bonds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Sascha</creatorcontrib><creatorcontrib>Schwarz, Willi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Sascha</au><au>Schwarz, Willi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PDE based Implementation of the Hull&amp;White Model for Cashflow Derivatives</atitle><jtitle>Computational statistics</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>18</volume><issue>3-4</issue><spage>417</spage><epage>434</epage><pages>417-434</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>SummaryA new implementation for the one-dimensional Hull&amp;White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF03354607</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2003-09, Vol.18 (3-4), p.417-434
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_miscellaneous_1677928339
source Springer Nature - Complete Springer Journals
subjects Bonding
Calibration
Cash flow
Computation
Convergence
Derivatives
Heat equations
Invariants
Martingales
Mathematical models
Partial differential equations
Statistics
Thermodynamics
Zero coupon bonds
title A PDE based Implementation of the Hull&White Model for Cashflow Derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PDE%20based%20Implementation%20of%20the%20Hull&White%20Model%20for%20Cashflow%20Derivatives&rft.jtitle=Computational%20statistics&rft.au=Meyer,%20Sascha&rft.date=2003-09-01&rft.volume=18&rft.issue=3-4&rft.spage=417&rft.epage=434&rft.pages=417-434&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/BF03354607&rft_dat=%3Cproquest_cross%3E1677928339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281684969&rft_id=info:pmid/&rfr_iscdi=true