A PDE based Implementation of the Hull&White Model for Cashflow Derivatives

SummaryA new implementation for the one-dimensional Hull&White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2003-09, Vol.18 (3-4), p.417-434
Hauptverfasser: Meyer, Sascha, Schwarz, Willi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SummaryA new implementation for the one-dimensional Hull&White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.
ISSN:0943-4062
1613-9658
DOI:10.1007/BF03354607