Algebraic rules for quadratic regularization of Newton’s method

In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2015-03, Vol.60 (2), p.343-376
Hauptverfasser: Karas, Elizabeth W., Santos, Sandra A., Svaiter, Benar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence properties of this class of methods are analysed. We show that if the sequence generated by the algorithm converges then its limit point is stationary. We also establish local quadratic convergence in a neighborhood of a stationary point with positive definite Hessian. Encouraging numerical experiments are presented.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-014-9671-y