Tissue normalizing capacity as a key determinant of carcinogenesis: an in silico simulation
A perturbed microenvironment is at the core of carcinogenesis. Here, we used a 2D cellular automata model to simulate how cancers are generated in epithelial tissue. We applied several mathematical rules to simulate tissue renewal and surrounding cell control. Under the simulation, we showed that th...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2015-03, Vol.37 (3), p.551-556 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A perturbed microenvironment is at the core of carcinogenesis. Here, we used a 2D cellular automata model to simulate how cancers are generated in epithelial tissue. We applied several mathematical rules to simulate tissue renewal and surrounding cell control. Under the simulation, we showed that the average value of surrounding normal cells could be an indicator for the tissue normalizing capacity (TNC). Further, we found the incidence of carcinogenesis correlated inversely with the TNC. Interestingly, we also found that multi-round mutagenesis could gradually disturb the TNC when compared to one-round mutagenesis: cancer incidence increased significantly compared to one-round mutagenesis. Our model suggests that the genetic alterations (mutations) by themselves were not sufficient to initiate cancer. The perturbation of TNC could be a key process leading to carcinogenesis. |
---|---|
ISSN: | 0141-5492 1573-6776 |
DOI: | 10.1007/s10529-014-1725-9 |