Tribone Tilings of Triangular Regions that Cover All but Three Holes

This paper extends the literature of tiling n -row triangular arrays ( T n ) with copies of 1 × 3 trominos discussed by Thurston, Conway, and Lagarias, focusing on tilings which cover all but three holes. We find a set of 2 Ω ( n 2 ) such tilings, disproving the conjecture from 1993 that there are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2015-03, Vol.53 (2), p.466-477
1. Verfasser: Thaler, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper extends the literature of tiling n -row triangular arrays ( T n ) with copies of 1 × 3 trominos discussed by Thurston, Conway, and Lagarias, focusing on tilings which cover all but three holes. We find a set of 2 Ω ( n 2 ) such tilings, disproving the conjecture from 1993 that there are only 2 o ( n 2 ) such tilings. Furthermore, we show that if three cells are randomly removed from T n when n ≡ 0 , 2 ( mod 3 ) , then the probability that the remaining region can be tiled by tribones is nonzero.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-014-9652-z