Effects of chemical modification of epoxy-(ethylene diamine) on water hyacinth fibers (Eichhornia crassiper)-filled (low-density polyethylene)/(natural rubber) blends
The effects of modification by epoxy‐(ethylene diamine) (EED) on (water hyacinth fiber)‐filled (low‐density polyethylene)/(natural rubber) (LDPE/NR/WHF‐EED) composites were studied. The LDPE/NR/WHF and LDPE/NR/WHF‐EED composites were prepared by using a Brabender Plasticorder. LDPE/NR/WHF‐EED showed...
Gespeichert in:
Veröffentlicht in: | Journal of vinyl & additive technology 2014-09, Vol.20 (3), p.201-209 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of modification by epoxy‐(ethylene diamine) (EED) on (water hyacinth fiber)‐filled (low‐density polyethylene)/(natural rubber) (LDPE/NR/WHF‐EED) composites were studied. The LDPE/NR/WHF and LDPE/NR/WHF‐EED composites were prepared by using a Brabender Plasticorder. LDPE/NR/WHF‐EED showed higher tensile strength, Young's modulus, and elongation at break but lower molar sorption of toluene compared with LDPE/NR/WHF composites. The Fourier‐transform infrared radiation analysis indicated that the absorption peak at 1,648 cm−1 exhibited the CN band. This CN band was formed from the bond of the epoxy group and the amine group in the WHF‐g‐epoxy‐(ethylene diamine) (WHF‐EED). The scanning electron microscopic morphology of LDPE/NR/WHF‐EED composites displayed rougher surfaces and less fiber pull, which improved the interfacial adhesion among the fiber/matrix. J. VINYL ADDIT. TECHNOL., 20:201–209, 2014. © 2014 Society of Plastics Engineers |
---|---|
ISSN: | 1083-5601 1548-0585 |
DOI: | 10.1002/vnl.21366 |